Home
Class 12
MATHS
Prove the following: cos^(-1)((12)/(13)...

Prove the following: `cos^(-1)((12)/(13))+sin^(-1)(3/5)=sin^(-1)((56)/(65))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that "cos"^(-1) (12)/(13) +"sin"^(-1)(3)/(5) ="sin"^(-1)(56)/(65) .

Prove the following : sin^(-1)(12/13)+cos^(-1)(4/5)+tan^(-1)(63/16)=pi

Prove that cos^(-1)""(12)/(13)+sin^(-1)""(3)/(5)=sin^(-1)""(56)/(65)

Prove that ( cos^(-1) ""(3)/(5) + sin^(-1)""(5)/(13) ) = sin^(-1)((63)/(65))

Prove that "cos"^(-1)12/13+"sin"^(-1)3/5="sin"^(-1)56/65