Home
Class 9
MATHS
(3a-2b)^3+(2b-5c)^3+(5c-3a)^3...

`(3a-2b)^3+(2b-5c)^3+(5c-3a)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove (a+2b)^3+(b+2c)^3+(c+2a)^3+3(a+3b+2c)(b+3c+2a)(c+3a+2b)=27(a+b+c)^3

If (a)/(b)=(4)/(3), then (3a+2b)/(3a-2b)=?( a) -1 (b) 3 (c) 5(d)6

Simplify the following:(a-2b+5c) (a-b)-(a-b-c) (2a + 3c) + (6a + b) (2c-3a-5b)

(2/3)^(-5) is equal to (a) ((-2)/3)^5 (b) (3/2)^5 (c) (2^-5)/3 (d) 2/(3^5)

Factorize the following 3,a+b+c,a^(3)+b^(3)+c^(3)a+b+c,a^(2)+b^(2)+c^(2),a^(4)+b^(4)+c^(4)a^(2)+b^(2)+c^(2),a^(3)+b^(3)+c^(3),a^(5)+b^(5)+c^(5)]|

Show that the points P(a+2b+c),Q(a-b-c),R(3a+b+2c) and S(5a+3b+5c) are coplanar given that a,b and c are non-coplanar.

Show that the points P(a+2b+c),Q(a-b-c),R(3a+b+2c) and S(5a+3b+5c) are coplanar given that a,b and c are non-coplanar.

Show that the points P(a+2b+c),Q(a-b-c),R(3a+b+2c) and S(5a+3b+5c) are coplanar given that a,b and c are non-coplanar.

Show that the points P(a+2b+c),Q(a-b-c),R(3a+b+2c) and S(5a+3b+5c) are coplanar given that a,b and c are non-coplanar.