Home
Class 11
MATHS
int(1)^(4)(1+x+e^(2x))dx...

`int_(1)^(4)(1+x+e^(2x))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(4x)-1)/(e^(2x))dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If int_(1)^(2)e^(x^(2))dx=a , then int_(e)^(e^(4))sqrt(lnx)dx is equal to

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then