Home
Class 12
MATHS
For x in (0, 1) prove that x-x^3/3 lt t...

For `x in (0, 1)` prove that `x-x^3/3 lt tan^-1 x lt x-pi^3.6` here or otherwise find `lim_(x->0) [tan^-1x/x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in (0,1) Prove that x-(x^(3))/(3) lt tan^(-1) x lt x -(x^(3))/(6) hence or otherwise find lim_( x to0) [(tan^(-1)x)/(x)]

solve tan^(-1) 2x + tan^(-1) 3x = pi/4 , if 6x^2 lt 1 .

Evaluate : lim_(x to 0) {tan(pi/4+x)}^(1/x)

If -1lt x lt 0 then tan^(-1) x equals

If -1lt x lt 0 then tan^(-1) x equals

Prove the inequalities tan x gt x + x^(3) //3 " at" 0 lt x lt pi//2

If x lt 0 , then prove that cos^(-1)x=pi+tan^(-1)""(sqrt(1-x^2))/x

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)