Home
Class 12
MATHS
Show that the function f(x) given by f(x...

Show that the function `f(x)` given by `f(x)={(e^(1//x)-1)/(e^(1//x)+1),\ \ w h e n\ x!=0 0,\ \ \ \ \ \ \ \ \ \ \ \ w h e n\ x=0` is discontinuous at `x=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x) given by f(x)={(e^(1/x)-1)/(e^(1/x)+1), when x!=00,quad when x=0 is discontinuous at x=0

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

Let f(x)={(1-cosx)/(x^2),\ \ \ w h e n\ x!=0 ; 1,\ \ \ \ w h e n\ x=0 . Show that f(x) is discontinuous at x=0 .

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

Let f(x)=(1-cosx)/(x^2),\ \ \ w h e n\ x!=0,\ f(x)=1,\ \ \ w h e n\ x=0 . Show that f(x) is discontinuous at x=0 .

If f(x)={(sin3x)/x ,\ \ \ w h e n\ x!=0 1,\ \ \ w h e n\ x=0 . Find whether f(x) is continuous at x=0 .