Home
Class 12
MATHS
Lim(x->1) ((sum(k=1)^ 200x^K)-200)/(x...

`Lim_(x->1) ((sum_(k=1)^ 200x^K)-200)/(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the limit: lim_(x->1)(sum _(k=1) ^100 x^k-100)/(x-1)

Evaluate lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

lim_ (x rarr1) ((sum_ (k = 1) ^ (200) x ^ (K)) - 200) / (x-1)

Evaluate the limit: lim_(x rarr1)(sum_(k=1)^(oo0)x^(k)-100)/(x-1)

Evaluate the limit: ("lim")_(x vec 1)(sum _(k=1) ^100 x^k-100)/(x-1)

k=lim_(xtooo)[(sum_(k=1)^(1000)(x+k)^(m))/(x^(m)+10^(1000))] (mgt101) is -

lim_ (x rarr1) ([sum_ (k = 1) ^ (100) x ^ (k)] - 100] ()) / (x-1)