Home
Class 12
MATHS
If f(x)={ sin4x , x!=0 ; 2, x=0 at x=0...

If f(x)={ `sin4x , x!=0 ; 2, x=0 ` at `x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the differentiability of f(x)={x^2sin(1/x),\ \ \ \ x!=0 ; 0 if x=0 at x=0

Let f_1:R→R,f_2:[0,∞)→R, f_3:R→R and f_4:R→[0,∞) be defined by f_1(x)={ ∣x∣ if x<0 ; e^x if x≥0 ; f_2(x)=x^2 ; f_3(x)={ sin x if x<0 ; x if x≥0 ; f_4(x)={ f_2(f_1(x)) if x<0 f_2(f_1(x)) if x≥0 ​then f_4 is

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

f(x)={(x^2 sin (1/x), xne0 ),(0, x=0):} at x=0

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

Determine if f defined by f(x)={x^2sin1/x , if""x!=0 0, if""""x=0

Show that the function f(x) given by f(x)={(sin x)/(x)+cos x,x!=0 and 2,x=0 is continuous at x=0

If f(x)=(sin(x^(2)))/(x),x!=0,f(x)=0,x=0 then at x=0,f(x) is