Home
Class 12
MATHS
Let f(x)=inte^x(x-1)(x-2)dxdot Then f...

Let `f(x)=inte^x(x-1)(x-2)dxdot` Then `f` decreases in the interval (a)`(-oo,-2)` (b) `-2,-1)` (c)`(1,2)` (d) `(2,+oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval a)(-oo,-2) (b) -2,-1) (1,2) (d) (2,+oo)

Let f(x) = int e^(x) (x - 1) (x - 2)dx . Then f decreases in the interval a) (-oo, - 2) b) (-2, -1) c)(1, 2) d) (2, + oo)

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

Let f(x) = cos x - (1 - (x^(2))/(2)) then f(x) is increasing in the interval a) (-oo, 1] b) [0, oo) c) (-oo, -1] d) (-oo, oo)

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

Show that f(x)=1/(1+x^2) decreases in the interval [0,\ oo) and increases in the interval (-oo,\ 0] .

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

If f(x)=int_(x^2)^(x^2+1)e^-t^2dt , then f(x) increases in (0,2) (b) no value of x (0,oo) (d) (-oo,0)