Home
Class 12
MATHS
2Iff: R rarr R be a differentiable funct...

2Iff: R rarr R be a differentiable function,such thatf(x+2y)=f(x)+f(2y)+4xy for all x,y in R

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R be a differentiable function such that f(x+2y)=f(x)+f(2y)+4xy, AA x,y in R , f(2)=10 , then f(3)=?

LEt F:R rarr R is a differntiable function f(x+2y)=f(x)+f(2y)+4xy for all x,y in R

LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for all x,y in R

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f'(3) is

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If underset(xrarr0)lim(f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is