Home
Class 12
MATHS
Show that the lines vec r=3 hat i+2 ha...

Show that the lines ` vec r=3 hat i+2 hat j-4 hat k+lambda( hat i+2 hat j+2 hat k);` ` vec r=5 hat i-\ 2 hat j+mu(3 hat i+2 hat j+6 hat k)` ; are intersecting. Hence find their point of intersection.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines vec r=3hat i+2hat j-4hat k+lambda(hat i+2hat j+2hat k)vec r=5hat i-2hat j+mu(3hat i+2hat j+6hat k); are intersecting.Hence find their point of intersection.

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Find the shortest distance between lines -> r=6 hat i+2 hat j+ hat k+lambda( hat i-2 hat j+2 hat k) and -> r=-4 hat i- hat k+mu(3 hat i-2 hat j-2 hat k) .

Show that the lines vec(r)=3hat(i)+2hat(j)-4hat(k)+lamda(hat(i)+2hat(j)+2hat(k)) vec(r)=5hat(i)-2hat(j)+hat(k)+mu(3hat(i)+2hat(j)+6hat(k)) intersect, Hence find the point of intersection.

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Show that the lines vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d vec r=(4 hat i- hat k)+mu(2 hat i+3 hat k) are coplanar. Also, find the plane containing these two lines.

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)