Home
Class 12
MATHS
lim(x->0)((4^x-1)^3)/(sin(x/p)ln(1+(x^2)...

`lim_(x->0)((4^x-1)^3)/(sin(x/p)ln(1+(x^2)/3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to

Evaluate the following limit : (lim)_(x->0)((4^x-1)^3)/(sin((x^2)/4)log(1+3x))

f(x)=((4^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3))) is continuous at x=0 and f(0)=12(ln4)^(3) then p=

If f(x)=((4^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3))) is cont. at x=0 and f(0)=(6log2)^(3) then p=

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of lim_(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^(2))/(3))) equals

The value of lim_(x to oo) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^(2))/(3))) equals

The value of lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) is

lim_(x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to