Home
Class 12
MATHS
Given that tan theta = 1/sqrt5, what is...

Given that `tan theta = 1/sqrt5`, what is the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta= 1/sqrt5 , find the value of cosec^2 theta-sec^2 theta

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

If tan theta = 1/(sqrt(11)) and 0 < theta < pi/2 , then the value of ("cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) is

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

Prove that cosec^(2) theta + sec^(2) theta = cosec^(2) theta sec^(2) theta .

If tan theta =(1)/(sqrt(5)), " write the value of " (("cosec"^(2)theta-sec^(2)theta))/(("cosec"^(2)theta+sec^(2)theta)).

If tan theta = 1/sqrt7 " then" ((cosec^(2) theta -sec^(2) theta))/((cosec^(2)theta + sec^(2) theta)) is equal to