Home
Class 14
MATHS
lim(x rarr0)(1-x)^(1/x)=...

`lim_(x rarr0)(1-x)^(1/x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that lim_(x rarr 0) (1+2x)^(1/x)=e^(2)

lim_(x rarr0)((1-x)^(n)-1)/(x)

Show that lim_(x rarr 0^+) (1+x)^(1/x) =e

lim_(x rarr0)(ln(1+x)^(1+x))/(x^(2))-(1)/(x)

lim_(x rarr0)(1+sin x)^(1/x^(2))

the value of lim_(x rarr0)(1+2x)^((1)/(x))

lim_(x rarr0)(1+2x)^((1)/(x)) = e^(2)

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)