Home
Class 12
MATHS
Given tantheta=1/sqrt5 what is the value...

Given `tantheta=1/sqrt5` what is the value of `(cosec^2theta-sec^2theta)/(cosec^2theta+sec^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

sec^2theta/(cosec^(2)theta) =

If tantheta=1/sqrt5 find the value of cosec^2theta-sec^2theta

If tan theta= 1/sqrt5 , find the value of cosec^2 theta-sec^2 theta

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

(sec^2theta-1)(cosec^2theta-1)

If tantheta=sqrt((1)/(13))and theta is acute , then what is the value of ((cosec^(2)theta-sec^(2)theta))/(cosec^(2)theta+sec^(2)theta)) ?

If tantheta=1/(sqrt7) , show that (cosec^(2)theta-sec^(2)theta)/(cosec^(2)theta+sec^(2)theta)=3/4

If tan theta=1/ sqrt7 , then ((cosec^2 theta-sec^2 theta)/(cosec^2 theta+sec^2 theta)) =

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Prove that cosec^2theta+sec^2theta=(sec^2theta)/(sin^2theta)