Home
Class 12
MATHS
lim(x->0)[sin|x|-|x|]=...

`lim_(x->0)[sin|x|-|x|]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(sin^2x)/x

lim_(x->0) (sin x /x)

lim_(x->0) (sin x /x)

(lim)_(x->0)(|sin x|)/x is a. 1 b . -1 c. 0 d. none of these

Evaluate the limit lim_(x->0)(sin3x)/x

(lim)_(x->0)([100(sin x)/x]+[100(tanx)/x])=

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

Evaluate : lim_(x -> 0 ) sin^(-1 ) x /x = ---

Evaluate : lim_( x -> 0 )( Sin|x|^3 )/ ( x^3 )

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is