Home
Class 11
PHYSICS
If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)...

If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` is

A

`(A^(2)+B^(2)+AB)^(1//2)`

B

`(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`

C

`A+B`

D

`(A^(2)+B^(2)+sqrt(3)AB)^(1//2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`….(i)
but `|vec(A)xxvec(B)|=|vec(A)||vec(B)| sin theta= AB sin theta`
and `vec(A).vec(B)=|vec(A)||vec(B)|cos theta= AB cos theta`
Make these substitution in Eq.(i), we get
`AB sin theta= sqrt(3) AB cos theta`
or `tan theta =sqrt(3)implies theta= 60^(@)` The resultant of vector `vec(A)` and `vec(B)` can be given by the law of parallelogram.
`:. |vec(A)+vec(B)|= sqrt(A^(2)+B^(2)+2AB cos 60^(@))`
`=sqrt(A^(2)+B^(2)+2ABxx1/2)`
`=(A^(2)+B^(2)+AB)^(1//2)`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    A2Z|Exercise Chapter Test|29 Videos
  • VECTORS

    A2Z|Exercise Assertion Reasoning|17 Videos
  • UNIT, DIMENSION AND ERROR ANALYSIS

    A2Z|Exercise Chapter Test|28 Videos
  • WAVES AND ACOUSTICS

    A2Z|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

vec(A) and vec(B) are two Vectors and theta is the angle between them, if |vec(A)xxvec(B)|= sqrt(3)(vec(A).vec(B)) the value of theta is

If |vec(a)|=10,|vec(b)|=2 and vec(a)*vec(b)=12 , then the value of the |vec(a)xxvec(b)| is

If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12 , then what is the value of |vec(a)xxvec(b)| ?

Assertion: vec(A)xxvec(B) is perpendicualr to both vec(A)-vec(B) as well as vec(A)-vec(B) Reason: vec(A)xxvec(B) as well as vec(A)-vec(B) lie in the plane containing vec(A) and vec(B) , but vec(A)xxvec(B) lies perpendicular to the plane containing vec(A) and vec(B) .

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

Assertion: If theta be the angle between vec(A) and vec(B) , then tan theta= (vec(A)xxvec(B))/(vec(A).vec(B)) Reason: vec(A)xxvec(B) is perpendicualr to vec(A).vec(B) .

If |vec a|=2|vec b|=5 and |vec a xxvec b|=8, then find the value of vec a.vec b.

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

Let vec a and vec b be unit vectors such that |vec a+vec b|=sqrt(3). Then find the value of (2vec a+5vec b)*(3vec a+vec b+vec a xxvec b)

If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what is the value of k ?