Home
Class 12
MATHS
lim(x->0)[x/([x])]=...

`lim_(x->0)[x/([x])]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ("lim")_(x->0)x/(|x|) does not exist.

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x->0)[nsinx/x] + lim_(x->0)[ntanx/x] equals

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x->0)[nsinx/x] + lim_(x->0)[ntanx/x] equals

lim_(x->0)(3^x-1)/x

lim_(x->0) (sin x /x)

lim_(x->0) (sin x /x)

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

lim_(x->0)(sin^2x)/x

Write the value of (lim)_(x->0^-)("sin"[x])/([x])

lim_(x->0)|x(x-1)|^[cos2x] ; where [.] is GIF is equal to : A.) 1 B.) 0 C.) e D.) does not exist