Home
Class 12
MATHS
The sum sum(n=1)^60 tan^-1((2n)/(n^4-n^...

The sum `sum_(n=1)^60 tan^-1((2n)/(n^4-n^2+1))` equals `tan^-1 K`, where K equal-

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

The sum sum_(n=1)^(oo)tan^(-1)((3)/(n^(2)+n-1)) is equal to

sum_(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1)) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to ___.

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to: