Home
Class 11
PHYSICS
Evaluate : intsec^4 x tan x dx....

Evaluate : `intsec^4 x tan x dx.`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \sec^4 x \tan x \, dx \), we can use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Identify the substitution Notice that the derivative of \( \sec x \) is \( \sec x \tan x \). This suggests that we can use \( t = \sec x \) as our substitution. ### Step 2: Differentiate the substitution Differentiate \( t = \sec x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    PRADEEP|Exercise PROBLEMS FOR PRACTICE|53 Videos
  • MATHEMATICAL TOOLS

    PRADEEP|Exercise M.C.Q|5 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos
  • OSCILLATIONS AND WAVES

    PRADEEP|Exercise multiple choice Questions|13 Videos

Similar Questions

Explore conceptually related problems

intsec^3x tan^3x dx

intsec^6x tanx dx

intsec^8x tanx dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1 dx)

Evaluate : int (" sec x + tan x")/(" sec x- tan x") " dx "

intsec^(4) x dx

Evaluate: intsec^2x/sqrt (1+tanx)dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

Evaluate : int tan 2x tan 3x tan 5x dx

int(sec^(4)x)/(tan x)dx