Home
Class 11
PHYSICS
Evaluate (i) int0^(pi//4) sin x cos x dx...

Evaluate (i) `int_0^(pi//4) sin x cos x dx` (ii) `int_0^(pi//2) (1 + cos x)^(1//2) dx` (iii) `int_0^(pi//2) (1 + sin x)^(1//2) dx` (iv) `int_0^(pi//4) (1 -cos 2x)^(1//2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): Evaluate \( \int_0^{\frac{\pi}{4}} \sin x \cos x \, dx \) 1. **Substitution**: Let \( u = \sin x \). Then, \( du = \cos x \, dx \). 2. **Change of limits**: When \( x = 0 \), \( u = \sin(0) = 0 \). When \( x = \frac{\pi}{4} \), \( u = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). 3. **Rewrite the integral**: \[ \int_0^{\frac{\pi}{4}} \sin x \cos x \, dx = \int_0^{\frac{1}{\sqrt{2}}} u \, du \] 4. **Integrate**: \[ \int u \, du = \frac{u^2}{2} \Big|_0^{\frac{1}{\sqrt{2}}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{2} - \frac{0^2}{2} = \frac{\frac{1}{2}}{2} = \frac{1}{4} \] ### Part (ii): Evaluate \( \int_0^{\frac{\pi}{2}} (1 + \cos x)^{\frac{1}{2}} \, dx \) 1. **Rewrite the integral**: \[ \int_0^{\frac{\pi}{2}} (1 + \cos x)^{\frac{1}{2}} \, dx \] 2. **Use the identity**: \( \cos x = 2\cos^2\left(\frac{x}{2}\right) - 1 \) leads to \( 1 + \cos x = 2\cos^2\left(\frac{x}{2}\right) \). 3. **Substitute**: \[ (1 + \cos x)^{\frac{1}{2}} = \sqrt{2} \cos\left(\frac{x}{2}\right) \] 4. **Integral becomes**: \[ \sqrt{2} \int_0^{\frac{\pi}{2}} \cos\left(\frac{x}{2}\right) \, dx \] 5. **Change of variable**: Let \( t = \frac{x}{2} \), then \( dx = 2 \, dt \) and the limits change from \( 0 \) to \( \frac{\pi}{4} \): \[ = 2\sqrt{2} \int_0^{\frac{\pi}{4}} \cos t \, dt \] 6. **Integrate**: \[ = 2\sqrt{2} \left[\sin t\right]_0^{\frac{\pi}{4}} = 2\sqrt{2} \left(\frac{1}{\sqrt{2}} - 0\right) = 2 \] ### Part (iii): Evaluate \( \int_0^{\frac{\pi}{2}} (1 + \sin x)^{\frac{1}{2}} \, dx \) 1. **Rewrite the integral**: \[ \int_0^{\frac{\pi}{2}} (1 + \sin x)^{\frac{1}{2}} \, dx \] 2. **Use the identity**: \( 1 + \sin x = \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2 \). 3. **Integral becomes**: \[ \int_0^{\frac{\pi}{2}} \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) \, dx \] 4. **Change of variable**: Let \( t = \frac{x}{2} \), then \( dx = 2 \, dt \) and the limits change from \( 0 \) to \( \frac{\pi}{4} \): \[ = 2 \int_0^{\frac{\pi}{4}} \left(\sin t + \cos t\right) \, dt \] 5. **Integrate**: \[ = 2 \left[-\cos t + \sin t\right]_0^{\frac{\pi}{4}} = 2 \left[-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - (-1)\right] = 2 \left(1 - 0\right) = 2 \] ### Part (iv): Evaluate \( \int_0^{\frac{\pi}{4}} (1 - \cos 2x)^{\frac{1}{2}} \, dx \) 1. **Use the identity**: \( 1 - \cos 2x = 2\sin^2 x \). 2. **Rewrite the integral**: \[ \int_0^{\frac{\pi}{4}} (1 - \cos 2x)^{\frac{1}{2}} \, dx = \int_0^{\frac{\pi}{4}} \sqrt{2} \sin x \, dx \] 3. **Integrate**: \[ = \sqrt{2} \left[-\cos x\right]_0^{\frac{\pi}{4}} = \sqrt{2} \left[-\frac{1}{\sqrt{2}} + 1\right] = \sqrt{2} \left(1 - \frac{1}{\sqrt{2}}\right) = \sqrt{2} - 1 \] ### Summary of Results 1. \( \int_0^{\frac{\pi}{4}} \sin x \cos x \, dx = \frac{1}{4} \) 2. \( \int_0^{\frac{\pi}{2}} (1 + \cos x)^{\frac{1}{2}} \, dx = 2 \) 3. \( \int_0^{\frac{\pi}{2}} (1 + \sin x)^{\frac{1}{2}} \, dx = 2 \) 4. \( \int_0^{\frac{\pi}{4}} (1 - \cos 2x)^{\frac{1}{2}} \, dx = \sqrt{2} - 1 \)

Let's solve the given integrals step by step. ### Part (i): Evaluate \( \int_0^{\frac{\pi}{4}} \sin x \cos x \, dx \) 1. **Substitution**: Let \( u = \sin x \). Then, \( du = \cos x \, dx \). 2. **Change of limits**: When \( x = 0 \), \( u = \sin(0) = 0 \). When \( x = \frac{\pi}{4} \), \( u = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). 3. **Rewrite the integral**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    PRADEEP|Exercise M.C.Q|5 Videos
  • MATHEMATICAL TOOLS

    PRADEEP|Exercise Fill in the blanks|5 Videos
  • MATHEMATICAL TOOLS

    PRADEEP|Exercise Fill in the blanks|5 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos
  • OSCILLATIONS AND WAVES

    PRADEEP|Exercise multiple choice Questions|13 Videos

Similar Questions

Explore conceptually related problems

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

int_0^pi sin^4x cos^4x dx

Evaluate : int _(0)^(pi//2) 1/(1 + cos x) dx

(i) int_0^pi (sin^2 x/2- cos^2 x/2) dx (ii) int_0^(pi//2) (sin^2x)/(1+cosx)^2 dx

int_0^(pi/2) (dx)/(1+cos x)

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

Evaluate : (i) int_(0)^(pi//4)sqrt(1+sin2x)\ dx (ii) int_(0)^(pi//2)sqrt(1+cos2x)\ dx

int_(0)^(pi//4) (1)/(1+cos 2x)dx

Evaluate: int_0^(pi//2)1/(4sin^2x+5cos^2x)dx

PRADEEP-MATHEMATICAL TOOLS-PROBLEMS FOR PRACTICE
  1. If x =at^3 and y = bt^2, find (dy)/(dx).

    Text Solution

    |

  2. If x = a cos theta and y = b sin theta, find (dy)/(dx)

    Text Solution

    |

  3. If the displacement x of a particle (in metre) is related with time (i...

    Text Solution

    |

  4. A particle starts from rest and its angular displacement (in red) is g...

    Text Solution

    |

  5. A metallic disc is being heated. Its area A ("in" m^2) at any time t ...

    Text Solution

    |

  6. A particle starts from origin with uniform acceleration. Its displacem...

    Text Solution

    |

  7. if the displacement of the particle at an instant is given by y = r...

    Text Solution

    |

  8. Intergrate the following with respect to x (i) 3sqrt(x^5) (ii) sqrtx...

    Text Solution

    |

  9. Intergrate the following functions w.r.t.x and find withinj the limits...

    Text Solution

    |

  10. Evaluate the following intergrals int(-pi//2)^(+pi//2) cos x dx

    Text Solution

    |

  11. Evaluate the following intergrals (i) int(15)^(30) cos (4x - 3)dx (i...

    Text Solution

    |

  12. Evaluate w.r.t.x , (i) "in"t x log x dx (ii) ing(x^2 - cos x +(1)/(x))...

    Text Solution

    |

  13. Evaluate (i) int0^(pi//4) sin x cos x dx (ii) int0^(pi//2) (1 + cos x)...

    Text Solution

    |

  14. Evaluate int(R)^(oo)(GMm)/x^(2)dx

    Text Solution

    |

  15. Evaluate int(40)^(50)(d theta)/(theta - theta0), where theta0 = 30^@C,...

    Text Solution

    |

  16. Evaluate : (a) int(u)^(upsilon)dv = int(0)^(t)adt (b)int(0)^(s)ds=int...

    Text Solution

    |

  17. Find the (i) surface area (ii) volume of the cylinder of length 10 cm ...

    Text Solution

    |

  18. Find the (i) surface area and (ii) volume of a shpere of radius 5cm.

    Text Solution

    |

  19. Find the (i) surface area (ii) volume of the rectangular body of dimen...

    Text Solution

    |

  20. Find the volume of the cone of height 10 cm and radius of the base 3 c...

    Text Solution

    |