Home
Class 11
PHYSICS
If vec A =2 hat I -5 hat k, find (i) | v...

If `vec A =2 hat I -5 hat k`, find (i) | vec A| and (ii) the direction cositnes of the vector `vec A`.

A

`cos alpha = A_(x) /A =2/(sqrt45), cos beta =A_(y)/A =4/sqrt 45) and cos `gamma =A_(z)/A =(-5)/(sqrt4)

B

`cos alpha = A_(x) /A =2/(sqrt2), cos beta =A_(y)/A =4/sqrt 45) and cos `gamma =A_(z)/A =(-5)/(sqrt45)

C

`cos alpha = A_(x) /A =2/(sqrt45), cos beta =A_(y)/A =4/sqrt 45) and cos `gamma =A_(z)/A =(-5)/(sqrt45)`

D

`cos alpha = A_(x) /A =2/(sqrt45), cos beta =A_(y)/A =4/sqrt 45) and cos `gamma =_(z)/A =(-5)/(sqrt45)

Text Solution

Verified by Experts

The correct Answer is:
C

(i) `A= sqrt (A_(x)^(2) +A_(y)^(2) +A_(z)^(2)) =sqrt((2)^(2) +(4) ^(2) + (-5)^(2)) =sqrt45`
(ii) `cos alpha = A_(x) /A =2/(sqrt45), cos beta =A_(y)/A =4/sqrt 45) and cos `gamma =A_(z)/A =(-5)/(sqrt45)`.
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    PRADEEP|Exercise 1 SolvedExamples|17 Videos
  • KINEMATICS

    PRADEEP|Exercise 2 SolvedExamples|31 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 3 hat(i) + 6 hat(j) - 2hat(k) , the directions of cosines of the vector vec(A) are

For given vector,vec a=2hat ij+2hat k and vec b=-hat i+hat j-hat k, find the unit vector in the direction of the vector vec a+vec b .

If vec a=hat i+hat j and vec b=4hat i-hat j ,find a unit vector in the direction of the vector (2vec a-vec b)

If vec a=hat i+hat j and vec b=4hat i-hat j find a unit vector in the direction of the vector (2vec a-vec b); also find vector and scalar components of (2vec a-vec b) along two coordinate axes.

For given vectors,vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k find the unit vector in the direction of the vector quad vec a+vec b

Let vec a = hat i + hat j + hat k, vec b = hat i + 4 hat j - hat k, vec c = hat i + hat j + 2 hat k and hat s be a the unit vector the magnitude of the vector (vec a .vec s)(vec b xx vec c) + (vec b. vec s)(vec c xx vec a) + ( vec c.vec s)(vec a xx vec b) is equal to (A) 1 (B) 2 (C) 3 (D) 4

If vec(A)= 2hat(i)+4hat(j)-5hat(k) then the direction of cosins of the vector vec(A) are

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec a=hat i+hat j,vec b=hat j+hat k,vec c=hat k+hat i find the unit vector in the direction of vec a+vec b+vec c

If vec a=hat i+2hat j+hat k,vec b=2hat i+hat j and vec c=3hat i-4hat j-5hat k then find a unit vector perpendicular to both of the vector (vec a-vec b) and (vec c-vec b)