Home
Class 11
PHYSICS
If | vec A | =2 and | vec B| =4, then ...

If ` | vec A | =2 and | vec B| =4`, then match the relations in column I with the ange ` theta` between ` vec A and vec B` in column II.
Column I, Column II
(a) ` |vec A xx vec B| =0` , (i) ` theta =30^@`
(b) `| vec A xx vec B|=0` , (ii) ` theta =45^@`
(c ) ` vec A xx vec B| =4` , (iii) ` theta =90^@`
(d) ` | vec A xxx vec B| = 4 sqrt 2` , (iv) ` theta =0^@`.

Text Solution

Verified by Experts

Here ` A= 2 and B=4`.
`(a) | vec A xx vec B| =0 = AB sin theta =2 xx 4 sin theta or =0 and theta =0^@`. It matches with option (iv).
`(b) | vec A xx vec B| =8 = AB sin theta 2 xx 4 sin theta or sin theta =1 and theta =90^@`. It matches with option (iii).
`(c ) | vec A xx vec B| =4 =2 xx 4sin theta or sin theta =1/2 or theta =30^@`. It matches with option (i).
`(d) | vec A xx vec B| = 4 sqrt 2=2 xx 4 or sin theta =1 /(sqrt 2) or theta =45^@`. It matches with option (ii).
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    PRADEEP|Exercise 1 Long answer|2 Videos
  • KINEMATICS

    PRADEEP|Exercise 2 Long answer|3 Videos
  • KINEMATICS

    PRADEEP|Exercise 5 Short answer|6 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos

Similar Questions

Explore conceptually related problems

If |vec A|=2 and | vec B| =4 , then match the relations in colum I with theange theta between vec A and vec B in column II. Column I , Column II (a) vec A.vec B=0 , (i) theta =0 (b) vec A . Vec B= + 8 , (ii) theta =90^@ (c ) vec A .vec B =4 , (iii) theta =180^@ (d) vec A .vec B =- 8 , (iv) theta =60^@ .

IF |vec(A)| = 2 and |vec(B)| = 4 , then match the relation in Column I with the angle theta between A and B in Column II. Now, mark the correct above choice from the given codes :

If vec A.vec B= |vec A xx vec B|, find the value of angle between vec A and vec B .

If | vec A| = 2, | vec B| =5 and | vec A xx vec B | =8 , din the value of (vec A. vec B0 .

If vec A cdot vec B =0 and vec A xx vec C=0 , then the angle between B and C is

Define vec a xxvec b and prove that |vec axvec b|=(vec a*vec b tan theta, where theta is the angle between vec a and vec b

If vec A and vec B are two vectors satisfying the relation vec A cdot vec B = |vec A xx vec B| . Then the value of |vec A - vec B| will be :

If the angle between the vectors vec A and vec B is theta , the value of the product (vec B xx vec A) cdot vec A is equal to

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)