Home
Class 11
PHYSICS
If vec a and vec b are two non colliner...

If ` vec a` and vec b` are two non collinerar unit vectors and if ` | vec a+ vec b | = sqrt 3`, then find the value of ` (vec a-vec b). (2 vec a+ vec b)`.

Text Solution

Verified by Experts

Given ` a= b= 1` and ` | vec a + vec b| = sqrt 2`
:. ` a^2 +b^1+ 2 ab cos theta =3 ` or ` cos thete = 1//2`
Now ( `vec a-vec b`). (` 2 vec a+vec b`)= `2 a^2 -b^2 - ab cos theta`
= 2- 1 1/2 1/2` .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • KINEMATICS

    PRADEEP|Exercise 4 Problems for practice|45 Videos
  • KINEMATICS

    PRADEEP|Exercise 1 Multiple choice|10 Videos
  • KINEMATICS

    PRADEEP|Exercise 2 Problems for practice|36 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos

Similar Questions

Explore conceptually related problems

If vec a and vec b are non-collinear unit vectors and |vec a+vec b|=sqrt(3) then (2vec a+5vec b)*(3vec a-vec b)=

If vec a and vec b are two non-collinear unit vectors such that |vec a+vec b|=sqrt(3), find (2vec a-5vec b)*(3vec a+vec b)

If vec a and vec b are two non collinear unit vectors such that |vec a+vec b|=3, find (2vec a-5vec b)3vec a+vec b

vec a and vec b are two non-collinear unit vectors vec a,vec b,xvec a-yvec b form a triangle.

If vec a, and vec b be two non-collinear unit vector such that vec a xx(vec a xxvec b)=(1)/(2)vec b, then find the angle between vec a, and vec b

If |vec a|=1=|vec b| and |vec a + vec b|=sqrt3 then evaluate (2 vec a - vec b) * (3 vec a + vec b) .

Let vec a and vec b be unit vectors such that |vec a+vec b|=sqrt(3). Then find the value of (2vec a+5vec b)*(3vec a+vec b+vec a xxvec b)

If vec a and vec b are two vectors such that |vec a xxvec b|=2, then find the value of [vec a,vec b,vec a xxvec b]

If vec a and vec b are two unit vectors such that vec a+vec b is also a unit vector,then find the angle between vec a and vec b.

If vec A , vec B and vec C are non-zero vectors and vec A. vec B=0 and vec B. vec C=0 , then find out the value vec A .vec B