Home
Class 12
MATHS
Let veca=hati+ hatj and vecb = 2hati-hat...

Let `veca=hati+ hatj` and `vecb = 2hati-hatk `. The point of intersection of the lines `vecrxxveca= vecbxxveca` and `vecrxxvecb=vecaxxvecb` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection of the lines vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb is

Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection of the lines vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb is

Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection of the lines vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb is (A) (3,-1,10 (B) (3,1,-1) (C) (-3,1,1) (D) (-3,-1,-10

Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection of the lines vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb is (A) (3,-1,10 (B) (3,1,-1) (C) (-3,1,1) (D) (-3,-1,-1)

Let veca = hati +hatj and vecb = 2hati - hatk then the point of intersection of the lines vecrxxveca = vecbxx veca and vecrxx vecb = vecaxx vecb is

If veca=4hati+3hatj+hatk and vecb=hati-2hatk , then find |2vecbxxveca| .

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=vec0 and veca.vecb=3 is

Let veca=hati+hatj+hatk, vecb=-hati+hatj+hatk, vecc=hati-hatj+hatk and vecd=hati+hatj-hatk . Then, the line of intersection of planes one determined by veca, vecb and other determined by vecc, vecd is perpendicular to

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to: