Home
Class 12
MATHS
Solve the equation z^8+1=0 and deduce th...

Solve the equation `z^8+1=0` and deduce that `cos4theta=8(costheta-cos(pi/8))(costheta-cos((3theta)/3))(costheta- cos((5pi)/8))(costheta-cot((7pi)/8))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

Prove that, (2costheta+1)(2costheta-1) (2cos2theta-1)(2cos4theta-1)=2cos8theta+1

Solve costheta+cos3theta-2cos2theta=0 .

Solve: cos3theta+costheta=0

16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8)) (costheta-cos((7pi)/8))= lambdacos4theta, then the value of lambda is _____.

16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8)) (costheta-cos((7pi)/8))= lambdacos4theta, then the value of lambda is _____.

16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8)) (costheta-cos((7pi)/8))= lambdacos4theta, then the value of lambda is _____.