Home
Class 12
MATHS
int(pi/6)^(pi/4) (tanx+cotxdx)/(tan^(-1)...

`int_(pi/6)^(pi/4) (tanx+cotxdx)/(tan^(-1)x+cot^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi//4)^(pi//3)(tan x + cot x) dx =

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

int_0^(pi/4) (tanx-x)tan^2xdx

int_0^(pi/4) (tanx-x)tan^2xdx

int_(pi//4)^(pi//2)cotxdx=?

int_(pi//4)^(pi//2)cotxdx=?

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

The value of int_((pi)/(6))^((pi)/(4))(dx)/(sin2x*(tan^(5)x+cot^(5)x)) is (A) (pi)/(40)(B)(pi)/(60)(C)(pi)/(120) (D) (pi)/(20)