Home
Class 12
MATHS
int (1/e)^e |logx|dx =...

`int _(1/e)^e |logx|dx` =

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_(1/ e)^e|logx|(dx)/(x^2) ,then I equals (A) 2 (B) 2/e (C) 2(1-1/e) (D) 0

If I=int_(1//e)^(e)|logx|(dx)/(x^(2)) , then I equals a)2 b) 2//e c) 2(1-1//e) d)0

The value of int_(1/e^2)^e abs(logx)dx is

Evaluate the following : int_(1)^(e)(logx)dx

int_(1)^(e)(logx)^(2)dx

The value of the integral overset(e )underset(1//e)int |logx|dx , is

int_(1)^(e)(1+logx)/(x)dx

int_(1)^(e)(1+logx)/(x)dx

Evaluate int_(1)^(e)(1+logx)/(x)dx

int log_e xdx = int 1/(log_x e) dx =