Home
Class 12
MATHS
Let e^(f(x))=lnxdot If g(x) is the inver...

Let `e^(f(x))=lnxdot` If `g(x)` is the inverse function of `f(x),` then `g^(prime)(x)` equal to: `e^x` (b) `e^x+x` . `e^x+e^x` (d)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let e^(f(x))=lnxdot If g(x) is the inverse function of f(x), then g^(prime)(x) equal to: (a) e^x (b) e^x+x . (c) e^x+e^x (d) e^(e^x+x)

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

Let e^(f(x))=ln x. If g(x) is the inverse function of f(x), then g'(x) equal to: e^(x)(b)e^(x)+xe^(x+e^(2))(d)

g(x) is a inverse function of f(x) find f'(x)?y=x^(3)+e^((x)/(2))

Let f(x)=log_(e)x+2x^(3)+3x^(5), where x>0 and g(x) is the inverse function of f(x) , then g'(5) is equal to:

If f(x) =(e^(x) + e^(-x))/2 , then the inverse function of f(x) is:

g(x) is a inverse function of f.g(x)=x^(3)+e^((x)/(2)) then find the value of f'(x)

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))