Home
Class 11
MATHS
Show that the following statement is tru...

Show that the following statement is true: The integer `n` is even if and only if `n^2` is even

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the words " necessary and sufficient " rewrite the following two biconditional statements : The integer N is even if and only if N^(2) is even .

Prove that the following biconditional compound statement is true : The integer x is even if and only if x^(2) is even .

By giving a counter example, show that the following statement are not true : If n is an even integer, then n is not prime.

Show that the following statement is true by the method of contrapositive r: If is x is an integer and x^2 is even, then x is also even.

By giving a counter example, show that the following statement is false. ' If n is an even integer, then n is prime'.

Show that the following statement is true by the method of contrapositive. p: If x is an integer and x2 is even, then x is also even.

Show that the following statement is true by the method of contrapositive. p: If x is an integer and x2 is even, then x is also even.

Show that the following statement is true by the method of contrapositive. P: If x is an integer and x^(2) is even, then x is also even.

Show that the following statement is true by the method of contrapositive. p: If x is an integer and x^2 is even, then x is also even.