Home
Class 12
MATHS
Let f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x...

Let `f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x)/(tanx-x)` be a continuous function at x=0. The value f(0) equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x)= (e ^(tan x) -e ^(x) +ln (sec x+ tan x)-x)/(tan x-x) be a continous function at x=0. The value of f (0) equals:

lim_(xto0)(e^(tanx)-e^(x))/(tanx-x)=

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

For the function f(x) = (log_(e )(1+x)-log_(e )(1-x))/(x) to be continuous at x = 0, the value of f(0) should be

For the function f(x) = (log_(e )(1+x)-log_(e )(1-x))/(x) to be continuous at x = 0, the value of f(0) should be

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals