Home
Class 12
MATHS
Show that none of the operations given b...

Show that none of the operations given below has identity.(i) `a ** b = a-b ` (ii) `a ** b = a^2 + b^2 ` (iii) `a ** b = a +ab ` (iv) ` a ** b = (a-b)^2 ` (v) ` a ** b = (ab)/4` (vi) ` a**b = a b^2`

Text Solution

Verified by Experts

(i)Given `a ** b = a-b `
`e` is the identity of `**` if
`a**e=e**a=a`
i.e,. `a-e=e-a=a`
...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT|Exercise EXERCISE 1.2|12 Videos
  • RELATIONS AND FUNCTIONS

    NCERT|Exercise Exercise 1.1|16 Videos
  • RELATIONS AND FUNCTIONS

    NCERT|Exercise SOLVED EXAMPLES|50 Videos
  • PROBABILITY

    NCERT|Exercise EXERCISE 13.2|18 Videos
  • SETS

    NCERT|Exercise EXERCISE 1.3|1 Videos

Similar Questions

Explore conceptually related problems

Let * be a binary operation on the set Q of rational numbers as follows: (i) a*b=a-b (ii) a*b=a^2+b^2 (iii) a*b=a+a b (iv) a*b=(a-b)^2 (v) a*b=(a b)/4 (vi) a*b=a b^2 Find which of the binary operations are commutative and which are associative

Let ** be the binary operation defined on Q . Find which of the following binary operations are commutative (i) a ** b=a-b, AA a,b in Q (ii) a ** b=a^(2)+b^(2), AA a,b in Q (iii) a ** b=a+ab, AA a,b in Q (iv) a ** b=(a-b)^(2), AA a,b in Q

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 2 ab xy + b ^(2) y ^(2)

If a = 2 and b = 3, find the value of (i) a + b (ii) a^(2) + ab (iii) ab - a^(2) (iv) 2a - 3b (v) 5a^(2) - 2ab (vi) a^(3) - b^(3)

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)

For each binary operation * defined below, determine whether * is commutative or associative. (i) On Z , define a ∗ b = a – b (ii) On Q , define a ∗ b = ab + 1 (iii) On Q , define a ∗ b = (ab)/(2) (iv) On Z^+ , define a ∗ b = 2^(ab) (v) On Z^+ , define a ∗ b = a^(b) (vi) On R – {– 1} , define a ∗ b = (a)/(b+1)

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

(cot (A + B)) / (2) * (tan (AB)) / (2) = (a) (a + b) / (ab) (b)