Home
Class 12
MATHS
sin^(-1) (x) + sin ^(-1)(1-x) = cos^(-1)...

`sin^(-1) (x) + sin ^(-1)(1-x) = cos^(-1) (x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (sin ^ (- 1) x-cos ^ (- 1) x) / (sin ^ (- 1) x + cos ^ (- 1) x) dx =

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Solve for x: sin^-1 x + sin^-1(1-x) = cos^-1x

The value of x satisfying sin^(-1)x+sin^(-1)(1x)=cos^(1)x are

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is