Home
Class 11
MATHS
If a circle x^2 + y^2 + 2gx + 2fy + c = ...

If a circle `x^2 + y^2 + 2gx + 2fy + c = 0` completely lies within the two lines `x + y = 2` and `x + y = -2` then: `min {|g+f+2|, |g + f - 2|}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

The circle x^(2) + y^(2) + 2g x + 2fy + c = 0 does not intersect the y-axis if

If the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 does not intersects the X - axis then ……..

If the circle x^(2)+y^(2)+2gx+2fy+c=0 touches y -axis then the condition is

Show that the circle S-= x^(2) + y^(2) + 2gx + 2fy + c = 0 touches the (i) X- axis if g^(2) = c

If (2,-1) lies on x^(2) + y^(2) + 2gx + 2fy + c = 0 , which is concentric with x^(2) + y^(2) + 4x - 6y + 3 = 0 , then c =

Equation of a circle that cuts the circle x^2 + y^2 + 2gx + 2fy + c = 0 , lines x=g and y=f orthogonally is : (A) x^2 + y^2 - 2gx - 2fy - c = 0 (B) x^2 + y^2 - 2gx - 2fy - 2g^2 - 2f^2 - c =0 (C) x^2 + y^2 + 2gx + 2fy + g^ + f^2 - c = 0 (D) none of these

If the origin lies inside the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 , then

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =