Home
Class 12
MATHS
Let A be a 2xx2 matrix with non-zero en...

Let A be a `2xx2` matrix with non-zero entries and let `A^2=""I` , where I is `2xx2` identity matrix. Define Tr(A) = sum of diagonal elements of A and |A| = determinant of matrix A. Statement-1: `T r(A)""=""0` Statement-2: `|A|""=""1` (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be 2xx2 matrix with non zero entries and let A^(2)=I where I is 2xx2 identity matrix. Define Tr(A)= sum of diagonal elements of A and |A|= determinant of matrix A Statement-1 Tr(A)=0 Statement -2 |A|=1

Let a be a 2xx2 matrix with non-zero entries and let A^(2)=I , where I is a 2xx2 identity matrix. Define Tr(A)= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1 : Tr (A) = 0 Statement 2 : |A|=1

Let a be a 2xx2 matrix with non-zero entries and let A^(2)=I , where I is a 2xx2 identity matrix. Define Tr(A)= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1 : Tr (A) = 0 Statement 2 : |A|=1

Let A be a 2xx2 matrix with non zero entries and let A^(2)=I , where I is 2xx2 identity matrix. Define Tr(A)= sum of diagonal elemets of A and |A|= determinant of matrix A. Statement 1: Tr(A)=0 Statement 2: |A|=1 .

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I, where i is a 2 xx 2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: |A| =1

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I, where i is a 2 xx 2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: |A| =1

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I , where I is a 2 xx 2 identity matrix, Tr(A) = sum of diagonal elements of A, and |A| = determinant of matrix A. Statement 1: Tr(A)=0 Statement 2: |A| =1

Let A be a 2xx2 matrix with non-zero entries and let A^(^^)2=I, where i is a 2xx2 identity matrix,Tr(A)i=sum of diagonal elements of A and |A|= determinant of matrix A.Statement 1:Tr(A)=0 Statement 2:|A|=1

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I, where i is a 2 xx 2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: |A| =1 . then (A) Statement 1 is false, statement 2 is true. (B) Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1. (C) Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1. (D) Statement 1 is true, statement 2 is false.

Let f: R-> R be a continuous function defined by f(x)""=1/(e^x+2e^(-x)) . Statement-1: f(c)""=1/3, for some c in R . Statement-2: 0""<""f(x)lt=1/(2sqrt(2)), for all x in R . (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1