Home
Class 12
MATHS
If the vectors a = (2, log3x,a) and b = ...

If the vectors `a = (2, log_3x,a)` and `b = (-3,a log_3x, log_3x)` are inclined at an acute angle, then(a) a=0(c) a>0(b) a < 0 (d)None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vector veca = (2 ,log_3 x ,a ) and vecb = (-3,a log_3x,log_3x) are inclined at an acute angle then

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

If log_2 log_3 log_4 (x+1) =0, then x is :-

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x , then find the value of a + b.

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0 are given a^(-4/3) (b) a^(-3/4) (c) a (d) a^(-1/2)

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0 are given a^(-4/3) (b) a^(-3/4) (c) a (d) a^(-1/2)