Home
Class 12
MATHS
(ln 8)/(ln 10)=log 8=3log2...

`(ln 8)/(ln 10)=log 8=3log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)(log_(8)x)=log_(8)(log_(2)x), find the value of (log_(2)x)^(2)

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

" 4) "log_(8)1+log_(8)2+log_(8)8=log_(8)(1+2+3)

If log 3,log(3^(x)-2) and backslash log(3^(x)+4) are in arithmetic progression,the x is equal to a.(8)/(3) b.log3^(8) c.8d. log 2^(3)

|(log)_3 512(log)_4 3(log)_3 8(log)_4 9|xx|(log)_2 3(log)_8 3(log)_3 4(log)_3 4|= (a) 7 (b) 10 (c) 13 (d) 17

det [[log_ (2) 512, log_ (4) 3log_ (3) 8, log_ (3) 9]] xxdet [[log_ (2) 3, log_ (8) 3log_ (3) 4, log_ (3) 4 ]] =

Comprehension 2 In comparison of two numbers, logarithm of smaller number is smaller, if base of the logarithm is greater than one. Logarithm of smaller number is larger, if base of logarithm is in between zero and one. For example log_2 4 is smaller than (log)_2 8 a n d(log)_(1/2)4 is larger than (log)_(1/2)8. Identify the correct order: (log)_2 6 (log)_3 8> log_3 6>(log)_4 6 (log)_3 8>(log)_2 6> log_3 6>(log)_4 6 (log)_2 8<(log)_4 6