Home
Class 12
MATHS
If f(x)={(log(1+a x)-log(1-b x))/x\ \ \ ...

If `f(x)={(log(1+a x)-log(1-b x))/x\ \ \ ,\ \ \ x!=0,\ \ \ \ \ \ \k\ \ \ \ \ \ \ \ \ \ \ \ \ \ ,\ \ \ \ \ \ \ \ \ \ \ x=0` and `f(x)` is continuous at `x=0` , then the value of `k` is `a-b` (b) `a+b` (c) `loga+logb` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ \ \ \ ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is (a) 0 (b) 1 (c) -1 (d) None of these

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

If f(x)=(x+1)^(cot x) be continuous at x=0, the f(0) is equal to 0( b) (1)/(e)(c)e(d) none of these

If the f(x) =(log(1+ax)-log(1-bx))/x , xne0 is continuous at x = 0 then, f(0) = .....

If f(x)={(log_(1-3x)(1+3x), x!=0),(=k ,x=0)) is continuous at x=0, then value of k equals (A) -1 (B) 1 (C) 2 (D) -2