Home
Class 12
MATHS
If line x-2y-1=0 intersects parabola y^(...

If line x-2y-1=0 intersects parabola `y^(2)=4x` at P and Q, then find the point of intersection of normals at P and Q.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x-y-1=0 intersect the parabola y^(2)=8x at P and Q, then find the point on intersection of tangents P and Q.

If normal of circle x^(2)+y^(2)+6x+8y+9=0 intersect the parabola y^(2)=4x at P and Q then find the locus of point of intersection of tangent's at P and Q.

The line 4x -7y + 10 = 0 intersects the parabola y^(2) =4x at the points P and Q. The coordinates of the point of intersection of the tangents drawn at the points P and Q are

The line 4x -7y + 10 = 0 intersects the parabola y^(2) =4x at the points P and Q. The coordinates of the point of intersection of the tangents drawn at the points P and Q are

The straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 in points P and Q the coordinates of the point of intersection of tangents drawn at P and Q to the circle is

The straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 in points P and Q the coordinates of the point of intersection of tangents drawn at P and Q to the circle is

If y_(1) and y_(2) are the ordinates of two points P and Q on the parabola y^(2)=4 a x and y_(3) is the ordinate of the point of intersection of the tangents at P and Q then, y_(1), y_(3) and y_(2) are in

If 3x+4y=12 intersect the ellipse x^2/25+y^2/16=1 at P and Q , then point of intersection of tangents at P and Q.

If PQ is the focal chord of the parabola y^(2)=-x and P is (-4, 2) , then the ordinate of the point of intersection of the tangents at P and Q is

If PQ is the focal chord of the parabola y^(2)=-x and P is (-4, 2) , then the ordinate of the point of intersection of the tangents at P and Q is