Home
Class 9
MATHS
If a^(1/3)+\ b^(1/3)+\ c^(1/3)=0 , then...

If `a^(1/3)+\ b^(1/3)+\ c^(1/3)=0` , then+? (a)`a+b+c=0` (b) `(a+b+c)^3=27\ a b c` (c)`a+b+c=3a b c` (d) `a^3+b^3+c^3=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0, then+ ?(a)a+b+c=0(b)(a+b+c)^(3)=27abc(c)a+b+c=3abc(d)a^(3)+b^(3)+c^(3)=0

If a^(1/3)+b^(1/3)+c^(1/3)=0 show that (a+b+c)^(3)=27 abc

If a^(1//3)+b^(1//3)+c^(1//3)=0 , then show that (a+b+c)^(3)=27 abc .

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If the points ((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),((b^2-3)/((b-1))),((c^3)/(c-1)) and (((c^2-3))/((c-1))), where a , b , c are different from 1, lie on the l x+m y+n=0 , then (a) a+b+c=-m/l (b)a b+b c+c a=n/l (c)a b c=((m+n))/l (d)a b c-(b c+c a+a b)+3(a+b+c)=0

If the points ((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),((b^2-3)/((b-1))) , ((c^3)/(c-1)) and (((c^2-3))/((c-1))), where a , b , c are different from 1, lie on the l x+m y+n=0 , then (a) a+b+c=-m/l (b) a b+b c+c a=n/l (c) a b c=((m+n))/l (d) a b c-(b c+c a+a b)+3(a+b+c)=0