Home
Class 12
MATHS
The value of the integral intalpha^beta ...

The value of the integral `int_alpha^beta 1/(sqrt((x-alpha)(beta-x)))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the inntegral int_(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-x)))dx is

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

int(dx)/(sqrt((x-alpha)(beta-x)))

Evaluate: int_(alpha)^(beta)(dx)/(sqrt((x-alpha)(beta-x)))dx

int (dx)/(sqrt((x-alpha)(x-beta)))

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

int(dx)/((x-alpha)sqrt((x-alpha)(x-beta)))