Home
Class 12
MATHS
Let a=int0^(log2) (2e^(3x)+e^(2x)-1)/(e^...

Let `a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx`, then `4e^a`=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int (e^(4x)-2e^(3x)+5e^(x)-2)/(e^(x)+1)dx

int (e ^ (3x) + e ^ (x)) / (e ^ (4x) -e ^ (2x) +1) dx

int_(0)^(1)e^(2x)e^(e^(x) dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx