Home
Class 12
MATHS
If z(r)=cos((ralpha)/(n^(2)))+isin((ralp...

If `z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where"r=1,2,3,...,nandi=sqrt(-1),"then"lim_(n to oo) z_(1)z_(2)z_(3)...z_(n)` is equal to

A

`e^(ialpha)`

B

`e^(-ialpha//2)`

C

`e^(ialpha//2)`

D

`root3(e^(ialpha))`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise For Session 4|14 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If z_(r)=(cos(pi alpha))/(n^(2))+i(sin(r alpha))/(n^(2)), where r=1,2,3...,n, then lim_(n rarr oo)z_(1)z_(2)z_(3)...z_(n) is equal to

If x_(r)=cos((pi)/(2^(r)))+i sin((pi)/(2^(r))),z_(t)=cos((pi)/(3^(t)))+i sin((pi)/(3^(r))) where r=1,2,3,... and t=1,2,3,..., then the value of (x_(1)x_(2)x_(3).........oo)^(2)(z_(1)z_(2)z_(3)...oo)^(4) is

If z_(r)=cos((pi)/(3^(r)))+i sin((pi)/(3^(r))),r=1,2,3 prove that z_(1)z_(2)z_(3)z_(oo)=i

If z_(n)=cos((pi)/((2n+1)(2n+3)))+i sin((pi)/((2n+1)(2n+3))) ,then lim_(n rarr oo)(z_(1)*z_(2)*z_(3)...z_(n))=

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

If quad cos((2r pi)/(5))+i sin((2r pi)/(5)),r=0,1,2,3,4 then z_(1)z_(2)z_(3)z_(4)z_(5) is equal to ,r=0,1,2,3,4

Find the value of lim_(n rarr oo)cos[pi sqrt(n^(2)+n)],n in Z is equal to