Home
Class 12
MATHS
If z is a complex number of unit modulus...

If z is a complex number of unit modulus and argument `theta`, then `arg((1+z)/(1+bar(z)))` equals to

A

`pi/2-theta`

B

`theta`

C

`pi-theta`

D

`-theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the expression \(\frac{1 + z}{1 + \bar{z}}\) where \(z\) is a complex number of unit modulus and argument \(\theta\). ### Step-by-Step Solution: 1. **Express \(z\)**: Since \(z\) has unit modulus and argument \(\theta\), we can express \(z\) in the polar form: \[ z = e^{i\theta} = \cos(\theta) + i\sin(\theta) \] 2. **Find \(\bar{z}\)**: The conjugate of \(z\) is given by: \[ \bar{z} = e^{-i\theta} = \cos(\theta) - i\sin(\theta) \] 3. **Substitute \(z\) and \(\bar{z}\) into the expression**: We need to evaluate: \[ \frac{1 + z}{1 + \bar{z}} = \frac{1 + (\cos(\theta) + i\sin(\theta))}{1 + (\cos(\theta) - i\sin(\theta))} \] This simplifies to: \[ \frac{1 + \cos(\theta) + i\sin(\theta)}{1 + \cos(\theta) - i\sin(\theta)} \] 4. **Multiply numerator and denominator by the conjugate of the denominator**: To simplify the expression, we multiply both the numerator and the denominator by the conjugate of the denominator: \[ \frac{(1 + \cos(\theta) + i\sin(\theta))(1 + \cos(\theta) + i\sin(\theta))}{(1 + \cos(\theta))^2 + \sin^2(\theta)} \] 5. **Simplify the denominator**: The denominator simplifies as follows: \[ (1 + \cos(\theta))^2 + \sin^2(\theta) = 1 + 2\cos(\theta) + \cos^2(\theta) + \sin^2(\theta) = 2 + 2\cos(\theta) = 2(1 + \cos(\theta)) \] 6. **Simplify the numerator**: The numerator becomes: \[ (1 + \cos(\theta))^2 + i(1 + \cos(\theta))\sin(\theta) = (1 + \cos(\theta))^2 + i(1 + \cos(\theta))\sin(\theta) \] 7. **Combine the results**: Thus, we have: \[ \frac{(1 + \cos(\theta))^2 + i(1 + \cos(\theta))\sin(\theta)}{2(1 + \cos(\theta))} \] This simplifies to: \[ \frac{1 + \cos(\theta)}{2} + i\frac{\sin(\theta)}{2} \] 8. **Find the argument**: The argument of a complex number \(x + iy\) is given by \(\tan^{-1}(\frac{y}{x})\). Here: \[ x = \frac{1 + \cos(\theta)}{2}, \quad y = \frac{\sin(\theta)}{2} \] Therefore, the argument is: \[ \arg\left(\frac{1 + z}{1 + \bar{z}}\right) = \tan^{-1}\left(\frac{\frac{\sin(\theta)}{2}}{\frac{1 + \cos(\theta)}{2}}\right) = \tan^{-1}\left(\frac{\sin(\theta)}{1 + \cos(\theta)}\right) \] 9. **Use trigonometric identities**: We know that: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)} \] Thus: \[ \arg\left(\frac{1 + z}{1 + \bar{z}}\right) = \frac{\theta}{2} \] ### Final Result: The argument \(\arg\left(\frac{1 + z}{1 + \bar{z}}\right) = \frac{\theta}{2}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|12 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number of unit modulus and argument q, then arg ((1+z)/(1+bar(z))) equal (1)(pi)/(2)-theta (2) theta(3)pi-theta(4)-theta

If z is a complex number of unit modulus and argument theta , then the real part of (z(1-barz))/(barz(1+z)) , is

Ifa complex number z has modulus 1 and argument (pi)/(3), then z^(2)+z

arg(bar(z))=-arg(z)

If z=1+i sqrt(3), then |arg(z)|+|arg(bar(z))| equals to

ARIHANT MATHS-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  2. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  3. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  4. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  5. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  6. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  7. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  8. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  9. If z is a complex number of unit modulus and argument theta, then arg(...

    Text Solution

    |

  10. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  11. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  12. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  13. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  14. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  15. A complex number z is said to be unimodular if abs(z)=1. Suppose z(1) ...

    Text Solution

    |

  16. Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2...

    Text Solution

    |

  17. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  18. A value of theta for which (2+3isintheta)/(1-2isintheta) is purely ima...

    Text Solution

    |

  19. Let 0 ne a, 0 ne b in R. Suppose S={z in C, z=1/(a+ibt)t in R, t ne ...

    Text Solution

    |

  20. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3). I...

    Text Solution

    |