Home
Class 12
MATHS
A value of theta for which (2+3isintheta...

A value of `theta` for which `(2+3isintheta)/(1-2isintheta)` is purely imaginary, is

A

`pi/6`

B

`sin^(-1)(sqrt(3)/4)`

C

`sin^(-1)((1)/sqrt(3))`

D

`pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \theta \) for which the expression \( \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \) is purely imaginary, we will follow these steps: ### Step 1: Define the complex number Let \[ z = \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \] We need to find \( \theta \) such that \( z \) is purely imaginary. This means that the real part of \( z \) must be zero. ### Step 2: Multiply by the conjugate To simplify the expression, multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(2 + 3i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (1 - 2i \sin \theta)(1 + 2i \sin \theta) = 1^2 - (2i \sin \theta)^2 = 1 + 4 \sin^2 \theta \] ### Step 4: Simplify the numerator Now simplify the numerator: \[ (2 + 3i \sin \theta)(1 + 2i \sin \theta) = 2 \cdot 1 + 2 \cdot 2i \sin \theta + 3i \sin \theta \cdot 1 + 3i \sin \theta \cdot 2i \sin \theta \] \[ = 2 + 4i \sin \theta + 3i \sin \theta - 6 \sin^2 \theta \] \[ = (2 - 6 \sin^2 \theta) + (4i \sin \theta + 3i \sin \theta) = (2 - 6 \sin^2 \theta) + 7i \sin \theta \] ### Step 5: Combine the results Putting it all together, we have: \[ z = \frac{(2 - 6 \sin^2 \theta) + 7i \sin \theta}{1 + 4 \sin^2 \theta} \] ### Step 6: Set the real part to zero For \( z \) to be purely imaginary, the real part must be zero: \[ \frac{2 - 6 \sin^2 \theta}{1 + 4 \sin^2 \theta} = 0 \] This implies: \[ 2 - 6 \sin^2 \theta = 0 \] ### Step 7: Solve for \( \sin^2 \theta \) Rearranging gives: \[ 6 \sin^2 \theta = 2 \implies \sin^2 \theta = \frac{1}{3} \] ### Step 8: Find \( \sin \theta \) Taking the square root: \[ \sin \theta = \frac{1}{\sqrt{3}} \] ### Step 9: Find \( \theta \) The values of \( \theta \) that satisfy this equation are: \[ \theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right) \] This corresponds to: \[ \theta = \frac{\pi}{6} \quad \text{and} \quad \theta = \frac{5\pi}{6} \quad \text{(in the range [0, 2π])} \] ### Final Answer The values of \( \theta \) for which \( \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \) is purely imaginary are: \[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|12 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

A value of ? for which (2+3i sin theta)/(1-2i sin theta) purely imaginary,is : (1)(pi)/(3)(2)(pi)/(6)(3)sin^(-1)((sqrt(3))/(4))(4)sin^(-1)((1)/(sqrt(3)))

Find all values of theta for which (1-isintheta)/(1+icostheta) is purely real.

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta?

Find sum of all possible value of theta in the interval (-(pi)/2,pi) for which (3+2isin theta)/(1-2sini theta) is purely imaginary (a) (pi)/(3) (b) (pi) (c) (2pi)/(3) (d) (pi)/(2)

Find real theta varepsilon (-pi,pi) so that (3+2isintheta)/(1-2isintheta) is purely imaginary .

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 isin theta ) is purely imaginary } Then the sum of the elements in A is

If (1+i cos theta)/(1-2i cos theta) is purely imaginary then theta =

ARIHANT MATHS-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  2. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  3. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  4. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  5. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  6. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  7. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  8. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  9. If z is a complex number of unit modulus and argument theta, then arg(...

    Text Solution

    |

  10. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  11. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  12. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  13. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  14. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  15. A complex number z is said to be unimodular if abs(z)=1. Suppose z(1) ...

    Text Solution

    |

  16. Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2...

    Text Solution

    |

  17. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  18. A value of theta for which (2+3isintheta)/(1-2isintheta) is purely ima...

    Text Solution

    |

  19. Let 0 ne a, 0 ne b in R. Suppose S={z in C, z=1/(a+ibt)t in R, t ne ...

    Text Solution

    |

  20. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3). I...

    Text Solution

    |