Home
Class 12
MATHS
Let 0 ne a, 0 ne b in R. Suppose S={z ...

Let `0 ne a, 0 ne b in R`. Suppose
`S={z in C, z=1/(a+ibt)t in R, t ne 0}`, where `i=sqrt(-1)`. If `z=x+iy` and `z in S`, then `(x,y)` lies on

A

the circle with radius `1/(2a)` and centre `(1/(2a),0)` for `a gt 0, b ne 0`

B

the circle with radius `-1/(2a)` and centre`(-1/(2a),0)` for `a lt 0,b ne 0`

C

the X-axis for `a ne 0,b=0`

D

the Y-axis for `a=0, b ne 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|12 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0} , where i= sqrt(-1) . If z = x + iy and z in S, then (x,y) lies on

Let a,b in R and a^2+ b^2 ne 0 Suppose S={z in C : z =(1)/(alpha +I bt ), t in R, t ne 0 } where I= sqrt(-1) if z=x +iy and ne S, then (x,y) lies on

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

If |z-1| =1 and arg (z)=theta , where z ne 0 and theta is acute, then (1-2/z) is equal to

ARIHANT MATHS-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  2. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  3. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  4. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  5. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  6. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  7. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  8. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  9. If z is a complex number of unit modulus and argument theta, then arg(...

    Text Solution

    |

  10. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  11. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  12. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  13. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  14. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  15. A complex number z is said to be unimodular if abs(z)=1. Suppose z(1) ...

    Text Solution

    |

  16. Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2...

    Text Solution

    |

  17. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  18. A value of theta for which (2+3isintheta)/(1-2isintheta) is purely ima...

    Text Solution

    |

  19. Let 0 ne a, 0 ne b in R. Suppose S={z in C, z=1/(a+ibt)t in R, t ne ...

    Text Solution

    |

  20. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3). I...

    Text Solution

    |