Home
Class 12
MATHS
Evaluate lim(xto oo)e^(x)sin (d//e^(x))....

Evaluate `lim_(xto oo)e^(x)sin (d//e^(x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \infty} e^{x} \sin\left(\frac{d}{e^{x}}\right) \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the limit expression**: We start with the limit: \[ L = \lim_{x \to \infty} e^{x} \sin\left(\frac{d}{e^{x}}\right) \] 2. **Substitute \( \theta \)**: Let \( \theta = \frac{d}{e^{x}} \). As \( x \to \infty \), \( e^{x} \to \infty \) which implies \( \theta \to 0 \). 3. **Rewrite the limit**: We can express the limit in terms of \( \theta \): \[ L = \lim_{\theta \to 0} e^{x} \sin(\theta) \] Since \( e^{x} = \frac{d}{\theta} \), we can rewrite: \[ L = \lim_{\theta \to 0} \frac{d}{\theta} \sin(\theta) \] 4. **Use the limit property of sine**: We know that as \( \theta \to 0 \): \[ \frac{\sin(\theta)}{\theta} \to 1 \] Therefore, we can rewrite the limit: \[ L = d \cdot \lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = d \cdot 1 = d \] 5. **Conclusion**: Thus, the final result is: \[ L = d \] ### Final Answer: \[ \lim_{x \to \infty} e^{x} \sin\left(\frac{d}{e^{x}}\right) = d \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr-oo)e^(x)

Evaluate: lim_(xto oo)(2x^(2)-2x-sin^(2)x)/(3x^(2)-4x+cos^(2)x)

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate: lim_(xto0)(sin 3x)/(sin 7x)

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate lim_(xto0) (e-(1+x)^(1//x))/(x) .

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))