Home
Class 12
MATHS
Evaluate lim(xto0)(log(5+x)-log(5-x))/x...

Evaluate `lim_(xto0)(log(5+x)-log(5-x))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\log(5+x) - \log(5-x)}{x}, \] we can use properties of logarithms and limits. Here is the step-by-step solution: ### Step 1: Use the property of logarithms We can combine the logarithmic expressions using the property that \(\log a - \log b = \log \left(\frac{a}{b}\right)\): \[ \log(5+x) - \log(5-x) = \log\left(\frac{5+x}{5-x}\right). \] Thus, we rewrite the limit as: \[ \lim_{x \to 0} \frac{\log\left(\frac{5+x}{5-x}\right)}{x}. \] ### Step 2: Apply L'Hôpital's Rule As \(x\) approaches 0, both the numerator and denominator approach 0, which gives us an indeterminate form of \(\frac{0}{0}\). Therefore, we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\log\left(\frac{5+x}{5-x}\right)}{x} = \lim_{x \to 0} \frac{\frac{d}{dx}\left[\log\left(\frac{5+x}{5-x}\right)\right]}{\frac{d}{dx}[x]}. \] ### Step 3: Differentiate the numerator Using the chain rule, we differentiate the numerator: \[ \frac{d}{dx}\left[\log\left(\frac{5+x}{5-x}\right)\right] = \frac{1}{\frac{5+x}{5-x}} \cdot \frac{d}{dx}\left[\frac{5+x}{5-x}\right]. \] Now, we differentiate \(\frac{5+x}{5-x}\): \[ \frac{d}{dx}\left[\frac{5+x}{5-x}\right] = \frac{(5-x)(1) - (5+x)(-1)}{(5-x)^2} = \frac{5 - x + 5 + x}{(5-x)^2} = \frac{10}{(5-x)^2}. \] Thus, we have: \[ \frac{d}{dx}\left[\log\left(\frac{5+x}{5-x}\right)\right] = \frac{1}{\frac{5+x}{5-x}} \cdot \frac{10}{(5-x)^2} = \frac{10(5-x)}{(5+x)(5-x)^2}. \] ### Step 4: Substitute back into the limit Now we substitute back into the limit: \[ \lim_{x \to 0} \frac{\frac{10(5-x)}{(5+x)(5-x)^2}}{1} = \lim_{x \to 0} \frac{10(5-x)}{(5+x)(5-x)^2}. \] ### Step 5: Evaluate the limit As \(x\) approaches 0, we can substitute \(x = 0\): \[ \frac{10(5-0)}{(5+0)(5-0)^2} = \frac{10 \cdot 5}{5 \cdot 25} = \frac{50}{125} = \frac{2}{5}. \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\log(5+x) - \log(5-x)}{x} = \frac{2}{5}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (lim)_(xvec 0)(log(5+x)-log(5-x))/(x)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

Evaluate lim_(xto0)|x|^(sinx)

Evaluate the following limits : lim_(x to 0)(log(3+x)-log(3-x))/x .

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto0)(cosecx)^(x) .

If lim_(x rarr0)(log(3+x)-log(3-x))/(x)=