Home
Class 12
MATHS
If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2...

If `L=lim_(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4)` exists and is finie then a=, b=, c= L=

Text Solution

Verified by Experts

The correct Answer is:
where `a=6=b,c=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(x rarr0)(a sin x-bx+cx^(2)+x^(3))/(2x^(2)log(1+x)-2x^(3)+x^(4)) exists and is finie then a=,b=,c=L=

If ("Lim")_(x->0)(asinx-b x+c x^2+x^3)/(2x^2dotln(1+x)-2x^3+x^4) exists & is finite, find the values of a ,\ b ,\ c & the limit.

Let L= lim_(x->0) (a-(a^3-x^3)^(1//3) - x^3/108)/(x^6); a>0 If L is finite, then L is

If lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2) exists and is equal to l, then b+d+l is equal to

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then Equation ax^(2)+bx+c=0 has

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to