Home
Class 12
MATHS
Slove lim(xto0)((1+x)^(1//x)-e)/x...

Slove `lim_(xto0)((1+x)^(1//x)-e)/x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} \), we can follow these steps: ### Step 1: Recognize the form of the limit First, we need to evaluate the expression \( (1+x)^{\frac{1}{x}} \) as \( x \) approaches 0. We know that: \[ \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \] This means that as \( x \to 0 \), \( (1+x)^{\frac{1}{x}} \) approaches \( e \). ### Step 2: Substitute into the limit Substituting this into our limit gives us: \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} \] This is an indeterminate form of type \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. This involves differentiating the numerator and the denominator. Let: \[ f(x) = (1+x)^{\frac{1}{x}} - e \] We need to differentiate \( f(x) \) and the denominator \( g(x) = x \). ### Step 4: Differentiate the numerator To differentiate \( f(x) \), we first rewrite \( (1+x)^{\frac{1}{x}} \) using logarithms: \[ y = (1+x)^{\frac{1}{x}} \implies \ln y = \frac{1}{x} \ln(1+x) \] Differentiating both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left( \frac{\ln(1+x)}{x} \right) \] Using the quotient rule: \[ \frac{d}{dx} \left( \frac{\ln(1+x)}{x} \right) = \frac{x \cdot \frac{1}{1+x} - \ln(1+x)}{x^2} \] Thus, \[ \frac{dy}{dx} = y \cdot \left( \frac{x \cdot \frac{1}{1+x} - \ln(1+x)}{x^2} \right) \] Substituting back \( y = (1+x)^{\frac{1}{x}} \): \[ \frac{dy}{dx} = (1+x)^{\frac{1}{x}} \cdot \left( \frac{x \cdot \frac{1}{1+x} - \ln(1+x)}{x^2} \right) \] ### Step 5: Evaluate the limit using L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} \cdot \left( \frac{x \cdot \frac{1}{1+x} - \ln(1+x)}{x^2} \right)}{1} \] As \( x \to 0 \), \( (1+x)^{\frac{1}{x}} \to e \) and we need to evaluate the limit of the remaining expression. ### Step 6: Simplify the limit We can simplify the limit: \[ \lim_{x \to 0} \left( \frac{x \cdot \frac{1}{1+x} - \ln(1+x)}{x^2} \right) \] This again gives an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule again. ### Step 7: Final evaluation After applying L'Hôpital's Rule again and simplifying, we find that the limit evaluates to: \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = \frac{1}{2} \] ### Final Answer Thus, the final answer is: \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e-(1+x)^(1//x))/(x) .

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .

lim_(xto0)((e^(x)-1)/x)^(1//x)

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

Find lim_(xto0)(cot^(-1)(1/x))/x

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate lim_(xto0)((1+x)^(m)-1)/((1+x)^(n)-1)

Evaluate: lim_(xto0)((1+x)^(6)-1)/((1+x)^(2)-1)