Home
Class 12
MATHS
If lim(xto0)(log(e)cot((pi)/4-K(1)x))/(t...

If `lim_(xto0)(log_(e)cot((pi)/4-K_(1)x))/(tanK_(2)x)=1`, then

A

`K_(1)=K_(2)`

B

`2K_(1)=K_(2)`

C

`K_(1)=2K_(2)`

D

`K_(1)=4K_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{\log_e \cot\left(\frac{\pi}{4} - K_1 x\right)}{\tan(K_2 x)} = 1, \] we will follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \): - \(\cot\left(\frac{\pi}{4} - K_1 x\right) \to \cot\left(\frac{\pi}{4}\right) = 1\), thus \(\log_e \cot\left(\frac{\pi}{4} - K_1 x\right) \to \log_e(1) = 0\). - \(\tan(K_2 x) \to \tan(0) = 0\). This gives us a \( \frac{0}{0} \) indeterminate form, which allows us to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule By L'Hôpital's Rule, we differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx} \left( \log_e \cot\left(\frac{\pi}{4} - K_1 x\right) \right) = \frac{-K_1}{\cot\left(\frac{\pi}{4} - K_1 x\right) \cdot \sin^2\left(\frac{\pi}{4} - K_1 x\right)}. \] Using the chain rule, the derivative of \(\cot\) gives us: \[ \frac{d}{dx} \left( \cot\left(\frac{\pi}{4} - K_1 x\right) \right) = -K_1 \cdot \csc^2\left(\frac{\pi}{4} - K_1 x\right). \] Thus, the derivative of the numerator becomes: \[ \frac{-K_1 \cdot \csc^2\left(\frac{\pi}{4} - K_1 x\right)}{\cot\left(\frac{\pi}{4} - K_1 x\right)}. \] For the denominator: \[ \text{Denominator: } \frac{d}{dx} \left( \tan(K_2 x) \right) = K_2 \sec^2(K_2 x). \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{-K_1 \cdot \csc^2\left(\frac{\pi}{4} - K_1 x\right)}{\cot\left(\frac{\pi}{4} - K_1 x\right) \cdot K_2 \sec^2(K_2 x)}. \] ### Step 4: Evaluate the limit Now substituting \( x = 0 \): - \(\cot\left(\frac{\pi}{4}\right) = 1\) - \(\csc^2\left(\frac{\pi}{4}\right) = 2\) - \(\sec^2(0) = 1\) Thus, we have: \[ \lim_{x \to 0} \frac{-K_1 \cdot 2}{1 \cdot K_2} = \frac{-2K_1}{K_2}. \] Setting this equal to 1 (as given in the problem): \[ \frac{-2K_1}{K_2} = 1. \] ### Step 5: Solve for the relationship between \(K_1\) and \(K_2\) From the equation: \[ -2K_1 = K_2 \implies K_2 = -2K_1. \] ### Final Result Thus, the relationship between \(K_1\) and \(K_2\) is: \[ K_2 = -2K_1. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

If lim _(xto0) (ln cot ((pi)/(4) -beta x))/( tan ax)=1, thetn (alpha)/(beta)=.....

Evaluate lim_(xto0)(log(5+x)-log(5-x))/x

Find lim_(xto0)(cot^(-1)(1/x))/x

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

lim_(xto0)(log_e(1+x))/(3^x-1) is equal to

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

lim_(x rarr1)(log(1-x))/(cot pi x)